150 research outputs found

    Kinetics of electrochemical dissolution of metals in porous media

    Get PDF
    Metals embedded in porous media interact electrochemically with the liquid phase contained in the pores. A widespread form of this, adversely affecting the integrity of engineered structures, is corrosion of steel in porous media or in natural environments. While it is well documented that the rate of this electrochemical dissolution process can vary over several orders of magni- tude, understanding the underlying mechanisms remains a critical challenge hampering the development of reliable predictive models. Here we study the electrochemical dissolution kinetics of steel in meso-to-macro-porous media, using cement-based materials, wood and artificial soil as model systems. Our results reveal the dual role of the pore structure (that is, the influence on the electrochemical behaviour through transport limitations and an area effect, which is ultimately due to microscopic inho- mogeneity of the metal/porous material interface). We rationalize the observations with the theory of capillary condensation and propose a material-independent model to predict the corrosion rate

    An FFT-based framework for predicting corrosion-driven damage in fractal porous media

    Full text link
    Understanding fracture in cementitious materials caused by the deposition and growth of corrosion products requires scale-bridging approaches due to the large length-scale difference between the micro-pores, where deposition occurs, and the structure, where deterioration manifests. Cementitious materials bear a highly heterogeneous micro-structure owing to the fractal nature of micro-pores. Simultaneously, a corrosion-driven fracture is a multi-physics problem involving ionic diffusion, chemical reactions, and stress development. This multi-scale and multi-physical character makes scale-bridging studies computationally costly, often leading to the use of simplified fractal porous media, which has important consequences for the quantitative interpretation of the results. Recent advances in homogenization approaches using Fast-Fourier-Transform (FFT) based methods have raised interest due to their ease of implementation and low computational cost. This paper presents an FFT-based framework for solving corrosion-driven fractures within fractal porous media. We demonstrate the effectiveness of the Fourier-based spectral method in resolving the multiple corrosion-driven mechanisms such as ionic diffusion, stress development, and damage within a fractal porous microstructure. Based on the presented methodology, we analyze the impact of simplifying fractal porous media with simple Euclidean geometry on corrosion-driven fracture. Our results demonstrate the importance of preserving both the porosity and fractal nature of pores for precise and reliable modeling of corrosion-driven failure mechanisms

    An Omnidirectional Aerial Manipulation Platform for Contact-Based Inspection

    Full text link
    This paper presents an omnidirectional aerial manipulation platform for robust and responsive interaction with unstructured environments, toward the goal of contact-based inspection. The fully actuated tilt-rotor aerial system is equipped with a rigidly mounted end-effector, and is able to exert a 6 degree of freedom force and torque, decoupling the system's translational and rotational dynamics, and enabling precise interaction with the environment while maintaining stability. An impedance controller with selective apparent inertia is formulated to permit compliance in certain degrees of freedom while achieving precise trajectory tracking and disturbance rejection in others. Experiments demonstrate disturbance rejection, push-and-slide interaction, and on-board state estimation with depth servoing to interact with local surfaces. The system is also validated as a tool for contact-based non-destructive testing of concrete infrastructure.Comment: Accepted submission to Robotics: Science and Systems conference 2019. 9 pages, 12 figure

    Ag/AgCl ion-selective electrodes in neutral and alkaline environments containing interfering ions

    Get PDF
    Abstract Chloride ingress can lead to serious degradation of various materials and structures. Continuous measurements of local chloride concentrations is thus of uttermost importance for laboratory research, monitoring of structures, and predictions of the residual life span for the most common building materials. This work investigates the applicability of Ag/AgCl ion-selective electrodes for the non-destructive continuous measurement of local chloride concentrations in concrete and stone when exposed to chloride-bearing environments such as seawater. The work studies the stability of Ag/AgCl ion-selective electrodes in neutral and alkaline solutions and the sensitivity to the main interfering ions coming from the environment and from the material itself. The results indicate negligible interference from fluoride, sulfate, and hydroxyl but considerable from bromide and sulfide. In chloride-free alkaline solutions, Ag/AgCl ion-selective electrodes are not stable over time, but—upon chloride arrival—they permit again reliable measurements of the chloride concentration. The results concerning interference are discussed by taking into account typical exposure environments and it is concluded that the ion-selective electrodes can satisfactorily be used to monitor chloride concentrations in built structures made out of concrete or stone

    Probabilistische Lebensdauerbemessung von StahlbetonbrĂĽcken ĂĽber kostenlose Webanwendung

    Get PDF
    Die Schädigung der Verkehrsinfrastruktur wird zu einem großen Teil durch chloridinduzierte Korrosion verursacht. Schäden an stark exponierten Brückenbauteilen im Spritzwasserbereich (XD3: z. B. Kappen und Mittelpfeiler) treten häufig vor Ende der geplanten Lebensdauer auf und verursachen enorme Instandsetzungskosten. Obwohl anerkannte Modelle zur probabilistischen Lebensdauerbemessung vorliegen und in Regelwerken verankert sind, ist deren Anwendung und damit die Überprüfung der Bemessung aufgrund komplizierter und kostenintensiver Statistiksoftware derzeit nur Experten vorbehalten. Mit Hilfe der neu entwickelten und frei zugänglichen Webanwendung „OCIMA“ (Online Corrosion Initiation Modeling App) können Ziellebensdauern auf Bauteilebene bereits in der Planungsphase überprüft werden. Werden die Ziellebensdauern nicht erreicht, kann die Wirkung betontechnologischer Optimierungen live abgeschätzt werden

    An image-based local homogenization method to model mass transport at the steel-concrete interface

    Get PDF
    Mass transport (moisture and ions) at the steel-concrete interface is closely related to corrosion of rebar in reinforced concrete structures. Thus, in the model simulating mass transport, the structure of the steel-concrete interface must be well represented. In this study, an image-based local homogenization method is proposed based on images taken in the scanning electron microscope (SEM) under the backscattered electron (BSE) detector. According to the gray level of the image, porosity can be calculated and then proposed equations are used to associate the transport properties (sorption isotherms, diffusion coefficients and permeability) with porosity. Experimental data of chloride concentration taken from the literature are used to validate the proposed method and a good agreement with simulated results them is found

    Three-dimensional characterization of the steel-concrete interface by FIB-SEM nanotomography

    Full text link
    While it is widely accepted that the steel-concrete interface (SCI) plays an important role in governing the long-term durability of reinforced concrete structures, understanding about the primary features of the SCI that influence corrosion degradation mechanisms has remained elusive. This lack of knowledge can be attributed, on the one hand, to the complex heterogeneous nature of the SCI, and, on the other hand, the absence of experimental techniques suitable for studying the relevant features of the SCI. Here, we use focused ion beam - scanning electron microscopy (FIB-SEM) nanotomography to obtain high resolution 3D tomograms of the steel-concrete interfacial zone. Five tomograms, spanning volumes ranging from 8,000 to 200,000 cubic micrometer, were acquired for situations representative of both non-corroded and corroded SCIs. The achieved voxel size falls within the range of 30-50 nm, thus providing a resolution clearly surpassing the capabilities of computed X-ray tomography. This resolution enables the 3D characterization of the microstructure at the capillary scale, which is the scale at which relevant corrosion and related mass transport processes occur. Thus, FIB-SEM nanotomography is capable of yielding datasets of the SCI that serve as basis for the generation of digital twins of the interfacial microstructure, thereby enabling future studies about durability and corrosion of reinforced concrete at the pore scale
    • …
    corecore